Revista nº 806

Martín-Piedra y Martín-Piedra Matrices para ingeniería tisular ósea Actualidad Médica · Número 806 · Enero/Abril 2019 Páginas 36 a 45 · 44 · 12. Lan Levengood SK, Polak SJ, Wheeler MB, Maki AJ, Clark SG, Jamison RD, & Wagoner Johnson AJ. Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials. 2010;31(13):3552–3563. doi:10.1016/j. biomaterials.2010.01.052 13. Roberts TT & Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics. The bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114–124. doi:10.4161/org.23306 14. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363–408. 15. Agarwal R, García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair, Adv. Drug Deliv. Rev. 2015;94:53–62, doi:10.1016/j. addr.2015.03.013. 16. Kocchiu-Cam L & Mattos-Vela MA. Distracción osteogénica: una revisión de la literatura. KIRU. 2013;10(2):166–72. 17. Tortolini P. y Rubio S. Diferentes alternativas de rellenos óseos. Avances en Periodoncia e Implantología Oral. 2012;24(3) 18. Estrada C, Paz AC, López LE. Ingeniería de tejido óseo: consideraciones básicas. Rev. EIA. Esc. Ing. Antioq. 2006;5:93-100. 19. Murphy CM, O’Brien FJ, Little DG, Schindeler A. Cell-scaffold interactions in the bone tissue engineering triad. European Cells and Materials. 2013;26:120-132. doi: 10.22203/eCM. v026a09 20. Bao X, Zhu L, Huang X, Tang D, He D, Shi J. & Xu G. 3D biomimetic artificial bone scaffolds with dual-cytokines spatiotemporal delivery for large weight-bearing bone defect repair. Nature Scientific Reports. 2017;7:7814. doi:10.1038/ s41598-017-08412-0 21. Kumar G, Tison CK, Chatterjee K, Pine PS, McDaniel JH, Salit ML, Simon CG. The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials. 2011;32(35):9188–9196. 22. Liu Y, Lim J,& Teoh S-H. Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnology Advances. 2013;31(5):688–705. 23. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B. Scaffolds for bone tissue engineering: State of the art and new perspectives. Materials Science and Engineering C. 2017;78:1246–1262 24. Morales Navarro D. Ingeniería tisular como puntal de la medicina regenerativa en estomatología. Rev Cubana Estomatol. 2014;51(3):288-304 25. Rodríguez Pérez E. Diseño de nuevos biomateriales basados en redes poliméricas interpenetradas de ácido hialurónico y polímeros acrílicos. Tesis Doctoral (2017) Universitat de Valencia. [citado 13-08-2018]. Disponible en: https://riunet. upv.es/bitstream/handle/10251/90632/RODRÍGUEZ – Diseño de nuevos biomateriales basados en redes poliméricas interpenetradas de Ácido ....pdf?sequence=1 26. Wu S, Liu X, Yeung KWK. Liu C, Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep. 2014;80:1–36. 27. Khan F. & Tanaka M. Designing smart biomaterials for tissue engineering. Int. J. Mol. Sci. 2018;19(1):17-30; doi:10.3390/ ijms19010017 28. Li L, He ZY, Wei XW, Wei YQ. Recent advances of biomaterials in biotherapy. Regen Biomater. 2016;3(2):99-105. doi:10.1093/ rb/rbw007. 29. Walsh W. R, Vizesi F, Michael D, Auld J, Langdown A, Oliver R, Yu Y, Irie H, Bruce W. β-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials. 2008;29(3):266-271. doi:10.1016/j.biomaterials.2007.09.035 30. Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AM, WalshWR, van Blitterswijk CA, De Bruijn JD. Smart biomaterials and osteoinductivity. Nat. Rev. Rheumatol. 2011;7:c1. 31. González Alconada R. Regeneración ósea en un modelo de xenotrasplante de células madre Tesis de doctorado. Universidad de Salamanca, 2015. 32. Miron RJ, Zhang Q, Sculean A, Buser D, Pippenger BE, Dard M, Shirakata Y, Chandad F, Zhang Y. Osteoinductive potential of 4 commonly employed bone grafts. Clinical Oral Investigations. 2016;20(8):2259–2265. 33. Roldán Vasco S, Vargas Isaza CA, Mejía Suaza ML, Zapata Giraldo J, Moncada Acevedo ME. Ingeniería de tejidos y aplicaciones. Fondo Editorial ITM (2016) p.276-341. ISBN: 978-958-8743-84-4. doi:org/10.22430/9789588743844 34. Chen Q, Zhu C, &Thouas GA. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Progress in Biomaterials. 2012;1(1):2-23. doi:org/10.1186/2194-0517-1-2 35. Van Bael S, Chai YC, Truscello S, Moesen M, Kerckhofs G, Van Oosterwyck H, Kruth JP, Schrooten J. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 2012;8(7):2824–34. 36. van Hengel IAJ, Riool M, Fratila-Apachitei LE et al . Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials. 2017;140:1–15. 37. Lee EJ, Kasper FK, &Mikos AG. Biomaterials for Tissue Engineering. Annals of Biomedical Engineering. 2014;42(2):323–337. doi:10.1007/s10439-013-0859-6 38. Mieszawska AJ, Fourligas N, Georgakoudi I, Ouhib N, Belton DJ, Perry CC, & Kaplan DL. Osteoinductive silk- silica composite biomaterials for bone regeneration. Biomaterials. 2010;31(34):8902–8910. doi:10.1016/j. biomaterials.2010.07.109 39. Solís Moré Y. Desarrollo de composites basados en quitosana/apatita y quitosana/ apatita silicato como material soporte para regeneración ósea. Tesis de doctorado. Universidad de La Habana. Editorial Universitaria (2015). ISBN 959-16-2714-8. 40. Zheng A, Cao L, Liu Y, Wu J, Zeng D, Hu L, Zhang X, Jiang X. Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering. Carbohydrate Polymers. 2018;199:244–255. doi:10.1016/j. carbpol.2018.06.093 41. Schugens C, Maquet V, Grandfils C, Jerome R, Teyssie P. Polylactide macroporous biodegradable implants for cell transplantation. II. Preparation of polylactide foams by liquid–liquid phase separation. J Biomed Mater Res. 1996;30(4):449–461. 42. Liulan L, Qingxi H, Xianxu H, Gaochun X. Design and fabrication of bone tissue engineering scaffolds via rapid prototyping and CAD. Journal of Rare Earths. 2007;25(2):379-383 doi:10.1016/S1002-0721(07)60510-9

RkJQdWJsaXNoZXIy ODI4MTE=