Revista nº 817

Botía Martínez C, et al. | Ingeniería tisular en cirugía pediátrica 163 Actual Med.2023;108(817):157-164 14. Klar AS, Güven S, Zimoch J, Zapiórkowska NA, Biedermann T, Böttcher-Haberzeth S, et al. Characterization of vascu- logenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute. Pediatr Surg Int. 2016;32(1):17–27. http://link.springer . com/10.1007/s00383-015-3808-7 15. Marino D, Luginbühl J, Scola S, Meuli M, Reichmann E. Bioengineering: Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med. 2014;6(221):221ra14-221ra14. https://stm.sciencemag. org/lookup/doi/10.1126/scitranslmed.3006894 16. Mazzone L, Moehrlen U, Ochsenbein‐Kölble N, Pontiggia L, Biedermann T, Reichmann E, et al. Bioengineering and in utero transplantation of fetal skin in the sheep model: A cru- cial step towards clinical application in human fetal spina bifida repair. J Tissue Eng Regen Med. 2020;14(1):58–65. https://onlinelibrary.wiley.com/doi/abs/10.1002/term.2963 17. Fauza DO, Fishman SJ, Mehegan K, Atala A. Videofetosco- pically assisted fetal tissue engineering: bladder augmenta- tion. J Pediatr Surg. 1998;33(1):7–12. 18. Bonilla A. Pediatric Microtia Reconstruction with Autolo- gous Rib. Facial Plast Surg Clin North Am. 2018;26(1):57– 68. https://linkinghub.elsevier.com/retrieve/pii/ S1064740617301177 19. Reighard CL, Hollister SJ, Zopf DA. Auricular reconstruction from rib to 3D printing. J 3D Print Med. 2018;2(1):35–41. 20. Wellisz T. Reconstruction of the burned external ear using a medpor porous polyethylene pivoting helix framework. Plast Reconstr Surg. 1993;91(5):811–8. 21. Bichara DA, O’Sullivan N-A, Pomerantseva I, Zhao X, Sundback CA, Vacanti JP, et al. The Tissue-Enginee- red Auricle: Past, Present, and Future. Tissue Eng Part B Rev. 2012;18(1):51–61. https://www.liebertpub.com/ doi/10.1089/ten.teb.2011.0326 22. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tis- sue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312–9. 23. Niu Y, Liu G, Chen C, Fu M, Fu W, Zhao Z, et al. Urethral re- construction using an amphiphilic tissue-engineered auto- logous polyurethane nanofiber scaffold with rapid vascula- rization function. Biomater Sci. 2020;8(8):2164–74. http:// xlink.rsc.org/?DOI=C9BM01911A 24. Abbas TO, Ali TA, Uddin S. Urine as a Main Effector in Uro- logical Tissue Engineering—A Double-Edged Sword. Cells. 2020;9(3):538. https://www.mdpi.com/2073-4409/9/3/538 25. Liu JS, Bury MI, Fuller NJ, Sturm RM, Ahmad N, Sharma AK. Bone Marrow Stem/Progenitor Cells Attenuate the In- flammatory Milieu Following Substitution Urethroplasty. Sci Rep. 2016;6(1):35638. http://www.nature.com/articles/ srep35638 26. Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A. Tissue-engineered autologous urethras for patients who need reconstruction: An observational study. Lancet. 2011;377(9772):1175–82. 27. Sabetkish S, Sabetkish N, Kajbafzadeh A-M. In-vivo rege- neration of bladder muscular wall with whole decellulari- zed bladder matrix: A novel hourglass technique for dupli- cation of bladder volume in rabbit model. J Pediatr Surg. 2019;S0022-3468(19):30883–8. http://www.ncbi.nlm.nih. gov/pubmed/31959427 28. Estrada Mira S, Morales Castro CA, Chams Anturi A, Aran- go Rave M, Restrepo Munera LM. Use of the extracellular matrix from the porcine esophagus as a graft for bladder enlargement. J Pediatr Urol. 2019;15(5):531–45. 29. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-en- gineered autologous bladders for patients needing cysto- plasty. Lancet. 2006;367(9518):1241–6. 30. Schäfer F-M, Stehr M. Tissue engineering in pediatric urolo- gy-a critical appraisal. Innov Surg Sci. 2018;3(2):107–18. 31. Barbagli G, Heidenreich A, Zugor V, Karapanos L, Lazzeri M. Urothelial or oral mucosa cells for tissue-engineered urethroplasty: A critical revision of the clinical outcome. Asian J Urol. 2020;7(1):18–23. https://linkinghub.elsevier. com/retrieve/pii/S2214388219300505 32. Martin LY, Ladd MR, Werts A, Sodhi CP, March JC, Hackam DJ. Tissue engineering for the treatment of short bowel syndrome in children. Pediatr Res. 2018;83(1–2):249–57. http://www.nature.com/articles/pr2017234 33. Díaz-Moreno E, Durand-Herrera D, Carriel V, Martín-Pie- dra M-Á, Sánchez-Quevedo M-C, Garzón I, et al. Evalua- tion of freeze-drying and cryopreservation protocols for long-term storage of biomaterials based on decellulari- zed intestine. J Biomed Mater Res Part B Appl Biomater. 2018;106(2):488–500. http://doi.wiley.com/10.1002/jb- m.b.33861 34. Kitano K, Schwartz DM, Zhou H, Gilpin SE, Wojtkiewicz GR, Ren X, et al. Bioengineering of functional human induced pluripotent stem cell-derived intestinal grafts. Nat Com- mun. 2017;8(1):765–77. http://www.nature.com/articles/ s41467-017-00779-y 35. Liu Y, Nelson T, Chakroff J, Cromeens B, Johnson J, Lannutti J, et al. Comparison of polyglycolic acid, polycaprolactone, and collagen as scaffolds for the production of tissue engi- neered intestine. J Biomed Mater Res. 2019;107(3):750–60. 36. Liu Y, Cromeens BP, Wang Y, Fisher K, Johnson J, Chakroff J, et al. Comparison of different in vivo incubation sites to pro- duce tissue-engineered small intestine. Tissue Eng - Part A. 2018;24(13–14):1138–47. 37. Perin S, McCann CJ, De Coppi P, Thapar N. Isolation and characterisation of mouse intestinal mesoangioblasts. Pe- diatr Surg Int. 2019;35(1):29–34.

RkJQdWJsaXNoZXIy ODI4MTE=