Revista nº 818
Descelularización de ovario de rata | Zumaquero Pérez RM, et al. 18 Actual Med.2024;109(818):10- 19 www.cancer.gov/espanol/publicaciones/diccionarios/ diccionario-cancer/def/ovario 3. Amjadi F, Beheshti R, Nasimi FS, Hassani A, Shirazi R, Tamadon A, et al. Decellularized bovine ovarian niche restored the function of cumulus and endothelial cells. BMC Res Notes. 2022;15(1). DOI: 10.1186/s13104-022- 06233-7 4. Ghahremani-Nasab M, Ghanbari E, Jahanbani Y, Mehdi- zadeh A, Yousefi M. Premature ovarian failure and tissue engineering. J Cell Physiol. 2020;235(5):4217–26. DOI: 10.1002/jcp.29376 5. Hewlett M, Mahalingaiah S. Update on primary ovarian insufficiency. Curr Opin Endocrinol Dia- betes Obes. 2015;22(6):483–9. DOI: 10.1097/ MED.0000000000000206 6. Qin Y, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and opportu- nities. Hum Reprod Update. 2015;21(6):787–808. DOI: 10.1093/humupd/dmv036 7. Donnez J, Dolmans MM, Pellicer A, Diaz-Garcia C, San- chez Serrano M, Schmidt KT, et al. Restoration of ovarian activity and pregnancy after transplantation of cryopre- served ovarian tissue: a review of 60 cases of reimplan- tation. Fertil Steril. 2013;99(6):1503–13. DOI: 10.1016/j. fertnstert.2013.03.030 8. Anderson RA, Wallace WHB. Fertility preservation in girls and young women. Clin Endocrinol (Oxf). 2011;75(4):409–19. DOI: 10.1111/j.1365-2265.2011.04 100.x 9. Campo H, Baptista PM, López-Pérez N, Faus A, Cervelló I, Simón C. De- and recellularization of the pig uterus: a bioengineering pilot study. Biol Reprod. 2017;96(1):34– 45. doi: 10.1095/biolreprod.116.143396 10. Amjadi F, Beheshti R, Nasimi FS, Hassani A, Shirazi R, Tamadon A, et al. Decellularized bovine ovarian niche restored the function of cumulus and endothelial cells. BMC Res Notes. 2022;15(1). DOI: 10.1186/s13104-022- 06233-7 11. Gandolfi F, Ghiringhelli M, Brevini TAL. Bioengineering the ovary to preserve and reestablish female fertility. Anim Reprod. 2020;16(1):45–51. DOI: 10.21451/1984-3143- AR2018-0099 12. Olalekan SA, Burdette JE, Getsios S, Woodruff TK, Ju- lie Kim J. Development of a novel human recellularized endometrium that responds to a 28-day hormone treat- ment. Biol Reprod. 2017;96(5):971–81. DOI: 10.1093/ biolre/iox039 13. Tamadon A, Park KH, Kim YY, Kang BC, Ku SY. Efficient biomaterials for tissue engineering of female reproduc- tive organs. Tissue Eng Regen Med. 2016;13(5):447–54. DOI: 10.1007/s13770-016-9107-0 14. Murphy S V., Atala A. 3D bioprinting of tissues and or- gans. Nat Biotechnol. 2014;32(8):773–85. DOI: 10.1038/ nbt.2958 15. Pennarossa G, Ghiringhelli M, Gandolfi F, Brevini TAL. Who- le-ovary decellularization generates an effective 3D bios- caffold for ovarian bioengineering. J Assist Reprod Genet. 2020;37(6):1329–39. DOI: 10.1007/s10815-020-01784-9 16. Pennarossa G, De Iorio T, Gandolfi F, Brevini TAL. Ovarian Decellularized Bioscaffolds Provide an Optimal Microen- vironment for Cell Growth and Differentiation In Vitro. Cells. 2021;10(8). DOI: 10.3390/celdas10082126 17. Wu T, Gao YY, Tang XN, Zhang JJ, Wang SX. Construction of Artificial Ovaries with Decellularized Porcine Scaffold and Its Elicited Immune Response after Xenotransplanta- tion in Mice. J Funct Biomater. 2022;13(4). DOI: 10.3390/ jfb13040165 18. Eivazkhani F, Abtahi NS, Tavana S, Mirzaeian L, Abedi F, Ebrahimi B, et al. Evaluating two ovarian decellularization methods in three species. Mater Sci Eng C Mater Biol Appl. 2019; 102:670–82. DOI: 10.1016/j.msec.2019.04.092 19. Alshaikh AB, Padma AM, Dehlin M, Akouri R, Song MJ, Brännström M, et al. Decellularization and recellulariza- tion of the ovary for bioengineering applications; stu- dies in the mouse. Reprod Biol Endocrinol. 2020;18(1). DOI: 10.1186/s12958-020-00630-y 20. Sistani MN, Zavareh S, Valujerdi MR, Salehnia M. Cha- racteristics of a decellularized human ovarian tissue created by combined protocols and its interaction with human endometrial mesenchymal cells. Prog Biomater. 2021;10(3):195–206. DOI: 10.1007/s40204-021-00163- 6 21. Hassanpour A, Talaei-Khozani T, Kargar-Abarghouei E, Razban V, Vojdani Z. Decellularized human ovarian sca- ffold based on a sodium lauryl ester sulfate (SLES)-trea- ted protocol, as a natural three-dimensional scaffold for construction of bioengineered ovaries. Stem Cell Res Ther. 2018;9(1):252. DOI: 10.1186/s13287-018-0971-5 22. Alshaikh AB, Padma AM, Dehlin M, Akouri R, Song MJ, Brännström M, et al. Decellularization of the mouse ovary: comparison of different scaffold generation protocols for future ovarian bioengineering. J Ovarian Res. 2019;12(1). DOI: 10.1186/s13048-019-0531-3 23. Rajabi-Zeleti S, Jalili-Firoozinezhad S, Azarnia M, Khay- yatan F, Vahdat S, Nikeghbalian S, et al. The behavior of cardiac progenitor cells on macroporous pericardium-de- rived scaffolds. Biomaterials. 2014;35(3):970–82. DOI: 10.1016/j.biomaterials.2013.10.045 24. Lecht S, Stabler CT, Rylander AL, Chiaverelli R, Schulman ES, Marcinkiewicz C, et al. Enhanced reseeding of dece- llularized rodent lungs with mouse embryonic stem cells. Biomaterials. 2014;35(10):3252–62. DOI: 10.1016/j.bio- materials.2013.12.093
RkJQdWJsaXNoZXIy ODI4MTE=