Revista nº 818

Hidroxiapatita con estroncio y actividad antimicrobiana | Lizette Morejón Alonso L, et al. 36 Actual Med.2024;109(818):20- 38 8. Yilmaz B, Alshemary AZ, Evis Z. Co-doped hydroxyapa- tites as potential materials for biomedical applications. Microchemical Journal. 2019;144:443-53. doi: 10.1016/j. microc.2018.10.007 9. Ren W-H, Xin S, Yang K, Yu Y-B, Li S-M, Zheng J-J, et al. Strontium‐Doped Hydroxyapatite Promotes Osteoge- nic Differentiation of Bone Marrow Mesenchymal Stem Cells in Osteoporotic Rats through the CaSR‐JAK2/STAT3 Signaling Pathway. Advanced NanoBiomed Research. 2022;2(9):2200018. doi: 10.1002/anbr.202200018 10. Wan B, Wang R, Sun Y, Cao J, Wang H, Guo J, et al. Building osteogenic microenvironments with strontium-substitu- ted calcium phosphate ceramics. Frontiers in Bioengi- neering and Biotechnology. 2020;8:591467. doi: 10.3389/ fbioe.2020.59146 11. Yan M-D, Ou Y-J, Lin Y-J, Liu R-M, Fang Y, Wu W-L, et al. Does the incorporation of strontium into calcium phosphate improve bone repair? A meta-analysis. BMC Oral Health. 2022;22(1):1-21. doi: 10.1186/s12903-022- 02092-7 12. Lourenco AH, Torres AL, Vasconcelos DP, Ribeiro-Ma- chado C, Barbosa JN, Barbosa MA, et al. Osteogenic, an- ti-osteoclastogenic and immunomodulatory properties of a strontium-releasing hybrid scaffold for bone repair. Materials Science and Engineering: C. 2019;99:1289-303. doi: 10.1016/j.msec.2019.02.053 13. Alyousef NI, Almaimouni YK, Benrahed MA, Khan AS, Shahid S. Effects of strontium substitution in synthetic apatites for biomedical applications. Handbook of Ionic Substituted Hydroxyapatites: Elsevier; 2020. p. 307-25. doi: 0.1016/B978-0-08-102834-6.00013-6 14. Moradi K, Sabbagh Alvani A. First-principles study on Sr-doped hydroxyapatite as a biocompatible filler for photo-cured dental composites. Journal of the Austra- lian Ceramic Society. 2020;56(2):591-8. doi: 10.1007/ s41779-019-00369-9 15. Sandiford NA, Franceschini M, Kendoff D. The burden of prosthetic joint infection (PJI). Annals of Joint. 2021;6. doi: 10.21037/aoj-2020-pji-11 16. Pietrocola G, Campoccia D, Motta C, Montanaro L, Arcio- la CR, Speziale P. Colonization and Infection of Indwe- lling Medical Devices by Staphylococcus aureus with an Emphasis on Orthopedic Implants. International journal of molecular sciences. 2022;23(11):5958. doi: 10.3390/ ijms23115958 17. Arciola CR, Campoccia D, Montanaro L. Implant infec- tions: adhesion, biofilm formation and immune evasion. Nature reviews microbiology. 2018;16(7):397-409. doi: 10.1038/s41579-018-0019-y 18. Kurtz SM, Lau EC, Son M-S, Chang ET, Zimmerli W, Parvizi J. Are we winning or losing the battle with periprosthe- tic joint infection: trends in periprosthetic joint infection and mortality risk for the medicare population. The Jour- nal of arthroplasty. 2018;33(10):3238-45. doi: 10.1016/j. arth.2018.05.042 19. Kim HS, Park JW, Moon S-Y, Lee Y-K, Ha Y-C, Koo K-H. Cu- rrent and future burden of periprosthetic joint infection from national claim database. Journal of Korean Medical Scien- ce. 2020;35(49):e410. doi: 10.3346/jkms.2020.35.e410 20. Lenguerrand E, Whitehouse MR, Beswick AD, Toms AD, Porter ML, Blom AW. Description of the rates, trends and surgical burden associated with revision for prosthetic joint infection following primary and revision knee repla- cements in England and Wales: an analysis of the Na- tional Joint Registry for England, Wales, Northern Ireland and the Isle of Man. BMJ open. 2017;7(7):e014056. doi: 10.1136/bmjopen-2016-014056 21. Wang G, Zhang H, He Q, Tong D, Ding C, Liu P, et al. Mi- cro-patterned titanium coatings with a grid-like struc- ture doped with vancomycin against bacteria and affecting osteogenic differentiation. RSC advances. 2017;7(32):19565-75. doi: 10.1039/c6ra27996a 22. Suganthi R, Elayaraja K, Joshy MA, Chandra VS, Girija E, Kalkura SN. Fibrous growth of strontium substituted hydroxyapatite and its drug release. Materials Science and Engineering: C. 2011;31(3):593-9. doi: 10.1016/j. msec.2010.11.025 23. Zhang X, Song G, Qiao H, Lan J, Wang B, Yang H, et al. Novel ternary vancomycin/strontium doped hydroxyapa- tite/graphene oxide bioactive composite coatings elec- trodeposited on titanium substrate for orthopedic appli- cations. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020;603:125223. doi: 10.1016/j. colsurfa.2020.125223 24. Singh RP, Singh G, Singh H. Sub-micrometric mesoporous strontium substituted hydroxyapatite particles for sus- tained delivery of vancomycin drug. Journal of the Aus- tralian Ceramic Society. 2019;55:405-14 .doi: 10.1007/ s41779-018-0248-6 25. Zarazua Mujo M. In-vitro study of antibiotic and stron- tium release from hydroxyapatite spheres and its PMMA composite. 2011. Department of Engineering Sciences; Applied Materials Science, Uppsala University. 26. Yang K, Xin S-S, Qu H-Y, An G, Wu X-F, Li S-Q, et al. Gentamicin loaded polyelectrolyte multilayers and strontium doped hydroxyapatite composite coating on Ti-6Al-4V alloy: antibacterial ability and biocompatibi- lity. Materials Technology. 2022;37(10):1478-85. doi: 10.1080/10667857.2021.1956850 27. Liu W, Wong C, Fong M, Cheung W, Kao R, Luk K, et al. Gentamicin‐loaded strontium‐containing hydroxyapatite bioactive bone cement—An efficient bioactive antibiotic drug delivery system. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2010;95(2):397- 406. doi: 10.1002/jbm.b.31730

RkJQdWJsaXNoZXIy ODI4MTE=