Revista nº 818

Lizette Morejón Alonso L, et al. | Hidroxiapatita con estroncio y actividad antimicrobianalisosomales 37 Actual Med.2024;109(818):20- 38 28. Wang B, Lilja M, Ma T, Sörensen J, Steckel H, Ahuja R, et al. Theoretical and experimental study of the incorpora- tion of tobramycin and strontium-ions into hydroxyapati- te by means of co-precipitation. Applied Surface Science. 2014;314:376-83. doi: 10.1016/j.apsusc.2014.06.193 29. Tsai S-W, Yu W-X, Hwang P-A, Huang S-S, Lin H-M, Hsu Y-W, et al. Fabrication and characterization of stron- tium-substituted hydroxyapatite-CaO-CaCO3 nanofi- bers with a mesoporous structure as drug delivery ca- rriers. Pharmaceutics. 2018;10(4):179. doi: 10.3390/ polym11111761 30. Sampath Kumar T, Madhumathi K, Rubaiya Y, Doble M. Dual mode antibacterial activity of ion substituted cal- cium phosphate nanocarriers for bone infections. Fron- tiers in Bioengineering and Biotechnology. 2015;3:59. doi: 10.3389/fbioe.2015.00059 31. Sundarabharathi L, Chinnaswamy M, Parangusan H, Ponnamma D, Al-Maadeed MAA. Cytocompatibility and dielectric properties of Sr2+ substituted nano-hydroxya- patite for triggered drug release. Front Adv Mater Res. 2019;1:18-24. 32. Sangeetha K, Ashok M, Girija E, Vidhya G, Vasugi G. Strontium and ciprofloxacin modified hydroxyapatites as functional grafts for bone prostheses. Ceramics In- ternational. 2018;44(12):13782-9. doi: 10.1016/j.cera- mint.2018.04.221 33. Marques C, Lemos A, Vieira S, e Silva OdC, Bettencourt A, Ferreira J. Antibiotic-loaded Sr-doped porous calcium phosphate granules as multifunctional bone grafts. Ce- ramics International. 2016;42(2):2706-16. doi: 10.1016/j. ceramint.2015.11.001 34. Godoy-Gallardo M, Eckhard U, Delgado LM, de Roo Puente YJ, Hoyos-Nogués M, Gil FJ, et al. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioac- tive Materials. 2021;6(12):4470-90. doi: 10.1016/j.bioact- mat.2021.04.033 35. Fielding GA, Roy M, Bandyopadhyay A, Bose S. Antibac- terial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta biomaterialia. 2012;8(8):3144-52. doi: 10.1016/j.actbio.2012.04.004 36. Gopi D, Ramya S, Rajeswari D, Karthikeyan P, Kavitha L. Strontium, cerium co-substituted hydroxyapatite nano- particles: Synthesis, characterization, antibacterial activity towards prokaryotic strains and in vitro studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014;451:172-80. doi: 10.1016/j.colsurfa.2014.03.035 37. Geng Z, Cui Z, Li Z, Zhu S, Liang Y, Liu Y, et al. Strontium incorporation to optimize the antibacterial and biological characteristics of silver-substituted hydroxyapatite coa- ting. Materials Science and Engineering: C. 2016;58:467- 77. doi: 10.1016/j.msec.2015.08.061 38. Li Y, Wang W, Han J, Li Z, Wang Q, Lin X, et al. Synthesis of silver-and strontium-substituted hydroxyapatite with combined osteogenic and antibacterial activities. Biolo- gical Trace Element Research. 2022:1-12. doi: 10.1007/ s12011-021-02697-z 39. Ressler A, Ivanković T, Polak B, Ivanišević I, Kovačić M, Urlić I, et al. A multifunctional strontium/silver-co-subs- tituted hydroxyapatite derived from biogenic sour- ce as antibacterial biomaterial. Ceramics Interna- tional. 2022;48(13):18361-73. doi: 10.1016/j.cera- mint.2022.03.095 40. O’Sullivan C, O’Neill L, O’Leary ND, O’Gara JP, Crean AM, Ryan KB. Osteointegration, antimicrobial and antibiofilm activity of orthopaedic titanium surfaces coated with silver and strontium-doped hydroxyapatite using a novel blas- ting process. Drug Delivery and Translational Research. 2021;11:702-16. doi: 10.1007/s13346-021-00946-1 41. Hassan M, Khaleel A, Karam SM, Al-Marzouqi AH, Ur Reh- man I, Mohsin S. Bacterial Inhibition and Osteogenic Poten- tials of Sr/Zn Co-Doped Nano-Hydroxyapatite-PLGA Com- posite Scaffold for Bone Tissue Engineering Applications. Polymers. 2023;15(6):1370. doi: 10.3390/polym15061370 42. Ahmed M, Mansour S, Mostafa MS, Darwesh R, El-Dek S. Structural, mechanical and thermal features of Bi and Sr co-substituted hydroxyapatite. Journal of Materials Scien- ce. 2019;54:1977-91. doi: 10.1007/s10853-018-2999-4 43. Ahmed M, Mansour S, Al-Wafi R, Abdel-Fattah E. Na- nofibers scaffolds of co-doped Bi/Sr-hydroxyapatite en- capsulated into polycaprolactone for biomedical appli- cations. Journal of Materials Research and Technology. 2021;13:2297-309. doi: 10.1016/j.jmrt.2021.05.074 44. Maqbool M, Nawaz Q, Atiq Ur Rehman M, Cresswell M, Jackson P, Hurle K, et al. Synthesis, characterization, antibacterial properties, and in vitro studies of selenium and strontium co-substituted hydroxyapatite. Internatio- nal Journal of Molecular Sciences. 2021;22(8):4246. doi : 10.3390/ijms2208424 45. Huang Y, Zhang X, Zhang H, Qiao H, Zhang X, Jia T, et al. Fabrication of silver-and strontium-doped hydrox- yapatite/TiO2 nanotube bilayer coatings for enhancing bactericidal effect and osteoinductivity. Ceramics In- ternational. 2017;43(1):992-1007. doi: 10.1016/j.cera- mint.2016.10.031 46. Ullah I, Siddiqui MA, Kolawole SK, Liu H, Zhang J, Ren L, et al. Synthesis, characterization and in vitro evaluation of zinc and strontium binary doped hydroxyapatite for biomedical application. Ceramics International. 2020;46(10):14448- 59. doi: 10.1016/j.ceramint.2020.02.242 47. Liu Y, Zhang B, Liu F, Qiu Y, Mu W, Chen L, et al. Strontium doped electrospinning fiber membrane with antibacterial and osteogenic properties prepared by pulse electroche- mical method. Engineered Regeneration. 2022;3(4):339- 51. doi: 10.1016/j.engreg.2022.07.005

RkJQdWJsaXNoZXIy ODI4MTE=