

91
José Manuel Rodríguez Ferrer
Retinopatía por hidroxicloroquina
Ophthalmol 2002; 284: 21-29.
30. Delori FC, Staurenghi G, Arend O, Dorey CK, Goger DG,
Weiter JJ. In vivo fluorescence of the ocular fundus exhibits
retinal pigment epithelium lipofuscin characteristics. Invest
Ophthalmol Vis Sci 1995; 36: 718-729.
31. Gorovoy IR, Gorovoy MS. Fundus Autofluorescence in
Hydroxychloroquine Toxicity. JAMA Ophthalmol 2013; 131:
506.
32. Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal
pathobiology. Exp Eye Res 2005; 80: 595-606.
33. Holz FG, Bellmann C, Staudt S, Schutt F, Volcker HE. Fundus
autofluorescence and development of geographic atrophy in
age related macular degeneration. Invest Ophthalmol Vis Sci
2001; 42: 1051-1056.
34. Kellner U, Renner AB, Tillack H. Fundus autofluorescence and
mfERG for early detection of retinal alterations in patients
using chloroquine/hydroxychloroquine. Invest Ophthalmol
Vis Sci 2006; 47: 3531-3538.
35. Kelmenson AT, Brar VS, Murthy RK, Chalam KV. Fundus
autofluorescence and spectral domain optical coherence
tomography in early detection of Plaquenil maculopathy. Eur
J Ophthalmol 2009; 20: 785-788.
36. Seagle BL, Rezai KA, Kobori Y, Gasyna EM, Rezaei KA,
Norris JR Jr. Melanin photoprotection in the human retinal
pigment epithelium and its correlation with light induced cell
apoptosis. Proc Natl Acad Sci USA 2005; 102: 8978-8983.
37. Kellner U, Kellner S, Weinitz S. Chloroquine retinopathy:
lipofuscin- and melanin-related fundus autofluorescence,
optical
coherence
tomography
and
multifocal
electroretinography. Doc Ophthalmol 2008; 116: 119-127.
38. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG,
Chang W et al. Optical coherence tomography. Science 1991;
254:1178-1181.
39. Rodriguez-Padilla JA, Hedges TR 3rd, Monson B, Srinivasan
V, Wojtkowski M, Elias Reichel E et al. High-speed ultra-
high-resolution optical coherence tomography findings in
hydroxychloroquine retinopathy. Arch Ophthalmol. 2007;
125: 775-780.
40. Stepien KE, Han DP, Schell J, Godara P, Rha J, Carroll J.
Spectral domain optical coherence tomography and adaptive
optics may detect hydroxychloroquine retinal toxicity before
symptomatic vision loss. Trans Am Ophthalmol Soc 2009; 107:
28-33.
41. Chen E, Brown DM, Benz MS, Fish RH, Wong TP, Kim RY et
al. Spectral domain optical coherence tomography as an
effective screening test for hydroxychloroquine retinopathy
(the “flying saucer” sign). Clin Ophthmalmol 2010; 4:1151-
1158.
42. Abazari A, Allam SS, Adamus G, Ghazi NG. Optical coherence
tomography findings in autoimmune retinopathy. Am J
Ophthalmol. 2012; 153: 750–756.
43. Pasadhika S, Fishman GA. Effects of chronic exposure
to hydroxychloroquine or chloroquine on inner retinal
structures. Eye (Lond) 2010; 24: 340-346.
44. Pasadhika S, Fishman GA, Choi D, Shahidi M. Selective
thinning of the perifoveal inner retina as an early sign of
hydroxychloroquine retinal toxicity. Eye (Lond) 2010; 24: 756-
762.
45. Omri S, Omri B, Savoldelli M, Jonet L, Thillaye-Goldenberg B,
Thuret G et al. The outer limiting membrane (OLM) revisited:
clinical implications. Clin Ophthalmol 2010; 4: 183-195.
46. Sutter EE, Tran D. The field topography of ERG components
in man-I: the photopic luminance response. Vision Res 1992;
32: 433-446.
47. Sutter EE. Imaging visual function with the multifocal
m-sequence technique. Vision Res 2001; 41: 1241-1255.
48. Sáez Moreno JA, Gutiérrez Zúñiga R, Canaval Parra LF,
Domínguez Hidalgo IC, Rodríguez-Ferrer JM. Localización
mediante electrorretinografía multifocal de las áreas
retinianas alteradas en la retinosis pigmentaria. Actual Med
2012; 97: 13-19.
49. Rodríguez-Ferrer JM, Sáez JA.
Electrophysiologic retinal
alterations in patients with optic neuropathy revealed by
mfERG. FENS Abstr 2014; 1: 636.
50. Lyons JS, Severns ML. Using multifocal ERG ring ratios to
detect and follow Plaquenil retinal toxicity: a review: Review
of mfERG ring ratios in Plaquenil toxicity. Doc Ophthalmol
2009; 118: 29-36.
51. Lai TY, Chan WM, Li H, Lai RY, Lam DS. Multifocal
electroretinographic
changes
in
patients
receiving
hydroxychloroquine therapy. Am J Ophthalmol 2005; 140:
794-807.
52. Browning DJ, Lee C. Relative sensitivity and specificity
of 10-2 visual fields, multifocal electroretinography, and
spectral domain optical coherence tomography in detecting
hydroxychloroquine and chloroquine retinopathy. Clin
Ophthalmol 2014; 8: 1389-1399.
53. Sáez Moreno JA, Rodríguez-Ferrer JM. Detección temprana
de la toxicidad retiniana por hidroxicloroquina mediante
técnicas de electrorretinografía multifocal. nuestra visión
personal. C Autoim 2014; 7: 9-20.
54. Raster M, Horn F, Junemann A, Rosa AAM, Souza GS, Gomes
BD et al. Retinal disorders in northern Brazilian patients
treated with chloroquine assessed by multifocal ERG. Doc
Ophthalmol 2011; 122: 77-86.
55. Rodríguez-Hurtado FJ, Sáez-Moreno JA, Rodríguez-Ferrer JM.
Maculopathy in patient with systemic lupus erythematosus
treated with hydroxychloroquine. Reumatol Clin 2012; 8:
280-283.
56. Heravian J, Saghafi M, Shoeibi N, Hassanzadeh S, Shakeri
MT, Sharepoor M. A comparative study of the usefulness of
color vision, photostress recovery time, and visual evoked
potential tests in early detection of ocular toxicity from
hydroxychloroquine. Int Ophthalmol 2011; 31:283-289.