

181
Juliana Girón Bastidas
Nuevos retos de la fabricacióndemucosaoralmediante técnicas de Ingeniería Tisular
6.
Heller M, Frerick-Ochs E V, Bauer H-K, Schiegnitz E, Flesch
D, Brieger J, et al. Tissue engineered pre-vascularized
buccal mucosa equivalents utilizing a primary triculture of
epithelial cells, endothelial cells and fibroblasts. Biomaterials
[Internet]. 2016 Jan [cited 2016 Jun 18];77:207–15. Available
from:
http://www.ncbi.nlm.nih.gov/pubmed/266064467.
Lee K, Silva EA, Mooney DJ. Growth factor delivery-based
tissue engineering: general approaches and a review of
recent developments. J R Soc Interface [Internet]. The
Royal Society; 2011 Feb 6 [cited 2016 Aug 24];8(55):153–
70.
Available
from:
http://www.ncbi.nlm.nih.gov/pubmed/20719768
8.
O’Brien FJ. Biomaterials & scaffolds for tissue
engineering. Mater Today. 2011;14(3):88–95.
9.
Tra WMW, van Neck JW, Hovius SER, van Osch GJVM, Perez-
Amodio S. Characterization of a three-dimensional mucosal
equivalent: similarities and differences with native oral
mucosa. Cells Tissues Organs [Internet]. 2012 [cited 2016
Jun 17];195(3):185–96. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/21494020
10. Peramo A, Marcelo CL, Feinberg SE. Tissue engineering of
lips and muco-cutaneous junctions: in vitro development
of tissue engineered constructs of oral mucosa and skin for
lip reconstruction. Tissue Eng Part C Methods [Internet].
2012 Apr [cited 2016 Jun 17];18(4):273–82. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/2206704211. Peña I, Junquera LM, Meana A, García E, García V, De
Vicente JC. In vitro engineering of complete autologous oral
mucosa equivalents: characterization of a novel scaffold.
J Periodontal Res [Internet]. 2010 Jun [cited 2016 Jun
17];45(3):375–80. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/20337894
12. KinikogluB,AuxenfansC,PierrillasP,JustinV,BretonP,Burillon
C, et al. Reconstruction of a full-thickness collagen-based
human oral mucosal equivalent. Biomaterials [Internet].
2009 Nov [cited 2016 Jun 17];30(32):6418–25. Available
from:
http://www.ncbi.nlm.nih.gov/pubmed/1969898713. Terada M, Izumi K, Ohnuki H, Saito T, Kato H, Yamamoto
M, et al. Construction and characterization of a tissue-
engineered oral mucosa equivalent based on a chitosan-
fish scale collagen composite. J Biomed Mater Res B
Appl Biomater [Internet]. 2012 Oct [cited 2016 Jun
23];100(7):1792–802. Available from:
http://www.ncbi.nlm.
nih.gov/pubmed/22807349
14. Kinikoglu B, Rodríguez-Cabello JC, Damour O, Hasirci V.
The influence of elastin-like recombinant polymer on the
self-renewing potential of a 3D tissue equivalent derived
from human lamina propria fibroblasts and oral epithelial
cells. Biomaterials [Internet]. 2011 Sep [cited 2016 Jun
17];32(25):5756–64. Available from:
http://www.ncbi.nlm.
nih.gov/pubmed/21592566
15. Golinski PA, Gröger S, Herrmann JM, Bernd A, Meyle J.
Oral mucosa model based on a collagen-elastin matrix.
J Periodontal Res [Internet]. 2011 Dec [cited 2016 Jul
4];46(6):704–11. Available from:
http://www.ncbi.nlm.nih.
gov/pubmed/21781121
16. Rheinwald JG, Green H. Serial cultivation of strains of human
epidermal keratinocytes: the formation of keratinizing
colonies from single cells. Cell [Internet]. 1975 Nov [cited
2016 Jul 5];6(3):331–43. Available from:
http://www.ncbi.
nlm.nih.gov/pubmed/1052771
17. Dickhuth J, Koerdt S, Kriegebaum U, Linz C, Müller-Richter
UD, Ristow O, et al. In vitro study on proliferation kinetics of
oral mucosal keratinocytes. Oral Surg Oral Med Oral Pathol
Oral Radiol. 2015;120(4):429–35.
18. Chen D, Hao H, Tong C, Liu J, Dong L, Ti D, et al.
Transdifferentiation of Umbilical Cord-Derived Mesenchymal
Stem Cells Into Epidermal-Like Cells by the Mimicking Skin
Microenvironment. Int J Low Extrem Wounds [Internet].
2015;14(2):136–45. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/25700709
19. Garzón I, Martin-Piedra MA, Alaminos M. Human dental
pulp stem cells. A promising epithelial-like cell source. Med
Hypotheses. 2015;84(5):516–7.
20. Liu Y, Wang X, Jin Y. Can bone marrow cells give rise to cornea
epithelial cells? Med Hypotheses. 2008;71(3):411–3.
21. Laco F, Kun M, Weber HJ, Ramakrishna S, Chan CK. The dose
effect of human bone marrow-derived mesenchymal stem
cells on epidermal development in organotypic co-culture. J
Dermatol Sci. 2009;55(3):150–60.
22. Meyer-Blazejewska EA, Call MK, Yamanaka O, Liu H, Schlötzer-
Schrehardt U, Kruse FE, et al. From hair to cornea: Toward
the therapeutic use of hair follicle-derived stem cells in
the treatment of limbal stem cell deficiency. Stem Cells.
2011;29(1):57–66.
23. Hashmani K, Branch MJ, Sidney LE, Dhillon PS, Verma M,
McIntosh OD, et al. Characterization of corneal stromal stem
cells with the potential for epithelial transdifferentiation.
Stem Cell Res Ther [Internet]. 2013;4(3):75. Available from:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4058700&tool=pmcentrez&rendertype=abstract
24. Ahmad S, Stewart R, Yung S, Kolli S, Armstrong L, Stojkovic
M, et al. Differentiation of human embryonic stem cells into
corneal epithelial-like cells by in vitro replication of the corneal
epithelial stem cell niche. Stem Cells. 2007;25(5):1145–55.
25. Gomes JÁP, Monteiro BG, Melo GB, Smith RL, da Silva MCP,
Lizier NF, et al. Corneal reconstruction with tissue-engineered
cell sheets composed of human immature dental pulp stem
cells. Investig Ophthalmol Vis Sci. 2010;51(3):1408–14.
26. Chavez-Munoz C, Nguyen KT, Xu W, Hong SJ, Mustoe TA,
Galiano RD. Transdifferentiation of adipose-derived stem cells
into keratinocyte-like cells: Engineering a stratified epidermis.
PLoS One. 2013;8(12).
27. Ferraro F, Celso C Lo, Scadden D. Adult stem cels and their
niches. Adv Exp Med Biol [Internet]. NIH Public Access; 2010
[cited 2016 Jul 5];695:155–68. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/21222205
28. Kinikoglu B, Rovere MR, Haftek M, Hasirci V, Damour O.
Influence of the mesenchymal cell source on oral epithelial
development. J Tissue Eng Regen Med [Internet]. 2012 Mar
[cited 2016 Aug 7];6(3):245–52. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/21548135
29. Uenoyama A, Kakizaki I, Shiomi A, Saito N, Hara Y, Saito T,
et al. Effects of C-xylopyranoside derivative on epithelial
regeneration in an in vitro 3D oral mucosa model. Biosci
Biotechnol Biochem [Internet]. 2016 Jul [cited 2016 Aug
7];80(7):1344–55. Available from:
http://www.ncbi.nlm.nih.
gov/pubmed/26966997
30. Wu T, Xiong X, Zhang W, Zou H, Xie H, He S. Morphogenesis of
rete ridges in human oral mucosa: a pioneering morphological
and immunohistochemical study. Cells Tissues Organs
[Internet]. 2013 [cited 2016 Jul 9];197(3):239–48. Available
from:
http://www.ncbi.nlm.nih.gov/pubmed/2312824931. Xiong X, Wu T, He S. Physical forces make rete ridges in oral
mucosa. Med Hypotheses. 2013;81(5):883–6.
32. Izumi K, Kato H, Feinberg SE. Tissue Engineered Oral Mucosa.
In: Stem Cell Biology and Tissue Engineering in Dental