Background Image
Table of Contents Table of Contents
Previous Page  33 / 68 Next Page
Basic version Information
Show Menu
Previous Page 33 / 68 Next Page
Page Background

181

Juliana Girón Bastidas

Nuevos retos de la fabricacióndemucosaoralmediante técnicas de Ingeniería Tisular

6.

Heller M, Frerick-Ochs E V, Bauer H-K, Schiegnitz E, Flesch

D, Brieger J, et al. Tissue engineered pre-vascularized

buccal mucosa equivalents utilizing a primary triculture of

epithelial cells, endothelial cells and fibroblasts. Biomaterials

[Internet]. 2016 Jan [cited 2016 Jun 18];77:207–15. Available

from:

http://www.ncbi.nlm.nih.gov/pubmed/26606446

7.

Lee K, Silva EA, Mooney DJ. Growth factor delivery-based

tissue engineering: general approaches and a review of

recent developments. J R Soc Interface [Internet]. The

Royal Society; 2011 Feb 6 [cited 2016 Aug 24];8(55):153–

70.

Available

from:

http://www.ncbi.nlm.nih.gov/

pubmed/20719768

8.

O’Brien FJ. Biomaterials & scaffolds for tissue

engineering. Mater Today. 2011;14(3):88–95.

9.

Tra WMW, van Neck JW, Hovius SER, van Osch GJVM, Perez-

Amodio S. Characterization of a three-dimensional mucosal

equivalent: similarities and differences with native oral

mucosa. Cells Tissues Organs [Internet]. 2012 [cited 2016

Jun 17];195(3):185–96. Available from:

http://www.ncbi.

nlm.nih.gov/pubmed/21494020

10. Peramo A, Marcelo CL, Feinberg SE. Tissue engineering of

lips and muco-cutaneous junctions: in vitro development

of tissue engineered constructs of oral mucosa and skin for

lip reconstruction. Tissue Eng Part C Methods [Internet].

2012 Apr [cited 2016 Jun 17];18(4):273–82. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/22067042

11. Peña I, Junquera LM, Meana A, García E, García V, De

Vicente JC. In vitro engineering of complete autologous oral

mucosa equivalents: characterization of a novel scaffold.

J Periodontal Res [Internet]. 2010 Jun [cited 2016 Jun

17];45(3):375–80. Available from:

http://www.ncbi.nlm.nih.

gov/pubmed/20337894

12. KinikogluB,AuxenfansC,PierrillasP,JustinV,BretonP,Burillon

C, et al. Reconstruction of a full-thickness collagen-based

human oral mucosal equivalent. Biomaterials [Internet].

2009 Nov [cited 2016 Jun 17];30(32):6418–25. Available

from:

http://www.ncbi.nlm.nih.gov/pubmed/19698987

13. Terada M, Izumi K, Ohnuki H, Saito T, Kato H, Yamamoto

M, et al. Construction and characterization of a tissue-

engineered oral mucosa equivalent based on a chitosan-

fish scale collagen composite. J Biomed Mater Res B

Appl Biomater [Internet]. 2012 Oct [cited 2016 Jun

23];100(7):1792–802. Available from:

http://www.ncbi.nlm

.

nih.gov/pubmed/22807349

14. Kinikoglu B, Rodríguez-Cabello JC, Damour O, Hasirci V.

The influence of elastin-like recombinant polymer on the

self-renewing potential of a 3D tissue equivalent derived

from human lamina propria fibroblasts and oral epithelial

cells. Biomaterials [Internet]. 2011 Sep [cited 2016 Jun

17];32(25):5756–64. Available from:

http://www.ncbi.nlm

.

nih.gov/pubmed/21592566

15. Golinski PA, Gröger S, Herrmann JM, Bernd A, Meyle J.

Oral mucosa model based on a collagen-elastin matrix.

J Periodontal Res [Internet]. 2011 Dec [cited 2016 Jul

4];46(6):704–11. Available from:

http://www.ncbi.nlm.nih

.

gov/pubmed/21781121

16. Rheinwald JG, Green H. Serial cultivation of strains of human

epidermal keratinocytes: the formation of keratinizing

colonies from single cells. Cell [Internet]. 1975 Nov [cited

2016 Jul 5];6(3):331–43. Available from:

http://www.ncbi

.

nlm.nih.gov/pubmed/1052771

17. Dickhuth J, Koerdt S, Kriegebaum U, Linz C, Müller-Richter

UD, Ristow O, et al. In vitro study on proliferation kinetics of

oral mucosal keratinocytes. Oral Surg Oral Med Oral Pathol

Oral Radiol. 2015;120(4):429–35.

18. Chen D, Hao H, Tong C, Liu J, Dong L, Ti D, et al.

Transdifferentiation of Umbilical Cord-Derived Mesenchymal

Stem Cells Into Epidermal-Like Cells by the Mimicking Skin

Microenvironment. Int J Low Extrem Wounds [Internet].

2015;14(2):136–45. Available from:

http://www.ncbi.nlm.nih.

gov/pubmed/25700709

19. Garzón I, Martin-Piedra MA, Alaminos M. Human dental

pulp stem cells. A promising epithelial-like cell source. Med

Hypotheses. 2015;84(5):516–7.

20. Liu Y, Wang X, Jin Y. Can bone marrow cells give rise to cornea

epithelial cells? Med Hypotheses. 2008;71(3):411–3.

21. Laco F, Kun M, Weber HJ, Ramakrishna S, Chan CK. The dose

effect of human bone marrow-derived mesenchymal stem

cells on epidermal development in organotypic co-culture. J

Dermatol Sci. 2009;55(3):150–60.

22. Meyer-Blazejewska EA, Call MK, Yamanaka O, Liu H, Schlötzer-

Schrehardt U, Kruse FE, et al. From hair to cornea: Toward

the therapeutic use of hair follicle-derived stem cells in

the treatment of limbal stem cell deficiency. Stem Cells.

2011;29(1):57–66.

23. Hashmani K, Branch MJ, Sidney LE, Dhillon PS, Verma M,

McIntosh OD, et al. Characterization of corneal stromal stem

cells with the potential for epithelial transdifferentiation.

Stem Cell Res Ther [Internet]. 2013;4(3):75. Available from:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

4058700&tool=pmcentrez&rendertype=abstract

24. Ahmad S, Stewart R, Yung S, Kolli S, Armstrong L, Stojkovic

M, et al. Differentiation of human embryonic stem cells into

corneal epithelial-like cells by in vitro replication of the corneal

epithelial stem cell niche. Stem Cells. 2007;25(5):1145–55.

25. Gomes JÁP, Monteiro BG, Melo GB, Smith RL, da Silva MCP,

Lizier NF, et al. Corneal reconstruction with tissue-engineered

cell sheets composed of human immature dental pulp stem

cells. Investig Ophthalmol Vis Sci. 2010;51(3):1408–14.

26. Chavez-Munoz C, Nguyen KT, Xu W, Hong SJ, Mustoe TA,

Galiano RD. Transdifferentiation of adipose-derived stem cells

into keratinocyte-like cells: Engineering a stratified epidermis.

PLoS One. 2013;8(12).

27. Ferraro F, Celso C Lo, Scadden D. Adult stem cels and their

niches. Adv Exp Med Biol [Internet]. NIH Public Access; 2010

[cited 2016 Jul 5];695:155–68. Available from:

http://www.

ncbi.nlm.nih.gov/pubmed/21222205

28. Kinikoglu B, Rovere MR, Haftek M, Hasirci V, Damour O.

Influence of the mesenchymal cell source on oral epithelial

development. J Tissue Eng Regen Med [Internet]. 2012 Mar

[cited 2016 Aug 7];6(3):245–52. Available from:

http://www.

ncbi.nlm.nih.gov/pubmed/21548135

29. Uenoyama A, Kakizaki I, Shiomi A, Saito N, Hara Y, Saito T,

et al. Effects of C-xylopyranoside derivative on epithelial

regeneration in an in vitro 3D oral mucosa model. Biosci

Biotechnol Biochem [Internet]. 2016 Jul [cited 2016 Aug

7];80(7):1344–55. Available from:

http://www.ncbi.nlm.nih

.

gov/pubmed/26966997

30. Wu T, Xiong X, Zhang W, Zou H, Xie H, He S. Morphogenesis of

rete ridges in human oral mucosa: a pioneering morphological

and immunohistochemical study. Cells Tissues Organs

[Internet]. 2013 [cited 2016 Jul 9];197(3):239–48. Available

from:

http://www.ncbi.nlm.nih.gov/pubmed/23128249

31. Xiong X, Wu T, He S. Physical forces make rete ridges in oral

mucosa. Med Hypotheses. 2013;81(5):883–6.

32. Izumi K, Kato H, Feinberg SE. Tissue Engineered Oral Mucosa.

In: Stem Cell Biology and Tissue Engineering in Dental